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Abstract

Boundary conditions are the major obstacle in simulations based on advanced continuum models of rarefied and micro-
flows of gases. In this paper, we present a theory how to combine the regularized 13-moment-equations derived from Boltz-
mann’s equation with boundary conditions obtained from Maxwell’s kinetic accommodation model. While for the linear
case these kinetic boundary conditions suffice, we need additional conditions in the non-linear case. These are provided by
the bulk solutions obtained after properly transforming the equations while keeping their asymptotic accuracy with respect
to Boltzmann’s equation.

After finding a suitable set of boundary conditions and equations, a numerical method for generic shear flow problems
is formulated. Several test simulations demonstrate the stable and oscillation-free performance of the new approach.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Gas flows in rarefied situations or micro-scale settings cannot be described by classical fluid models like the
system of Navier–Stokes–Fourier (NSF). This is due to lack of sufficiently many collisions of particles, i.e., the
Knudsen number – the ratio of mean free path and macroscopic length – is too large and the flow cannot be
considered to be near equilibrium. Instead, the statistical approach of kinetic gas theory is required to model
those processes as described, e.g., in the textbooks [7,8,37]. Moment-equations as introduced by Grad [10,11]
offer a possibility to reduce the complex statistical description of kinetic theory to a continuum model for mac-
roscopic fields, see [3,19]. Various modifications have been proposed, e.g., in [9,13,16,20].

The regularized 13-moment-equations (R13) derived in [30] may be considered as the most promising exten-
sion of Grad’s equations. They combine high physical accuracy and stability, see [35,36]. Moreover, R13 was
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shown to satisfy a consistent ranking in terms of orders-of-magnitude, see [28], and an entropy inequality in
the linear case [31]. Especially due to its stability, the R13-system succeeds over models obtained by high-order
Chapman–Enskog-expansion as used, e.g., in [2,17,38]. In general, high-order Chapman–Enskog-expansions
are proven to be linearly unstable [5,23]. See the textbook [26] for an overview of different model equations in
kinetic gas theory.

Due to the modelling successes, the interest in computations based on moment-equations is vivid, e.g., in
[1,21,24,32]. Computational methods for the R13-system have been proposed in [34] for the initial value prob-
lem and in [12] for the boundary value problem. The major obstacle to overcome in simulations is the mod-
elling of suitable boundary conditions. Here, the paper of Gu and Emerson [12] may be regarded as pioneering
work. They showed that moment relations obtained from an accommodation model are in principle sufficient
to describe boundary conditions for R13. However, in their work inconsistencies occur and oscillations are
reported which are likely due to insufficient modelling of the boundary.

The present paper establishes a theory of boundary conditions for the regularized 13-moment-equations
based on physical and mathematical requirements for the system. As general setting we shall consider shear
flows in a parallel channel. In spite of the apparent one-dimensional character of the setting, the full two-
dimensional set of R13-variables is involved. This makes the process a relevant model also for more complex
computations. For boundary conditions, we follow the approach originally given by Grad in [10] based on the
kinetic accommodation model of Maxwell [18], similar to the approach in [12]. This gives a certain number of
boundary conditions. However, the mathematical structure of the equations shows that the linear and non-
linear cases require different numbers of boundary conditions. Our major hypothesis is that, instead of finding
additional boundary conditions for the non-linear case, the equations should be transformed such that the
number of required boundary conditions remains the same. To be precise, the transformed equations will sup-
ply additional conditions which complement the boundary conditions, also in the untransformed case. The
transformation of the system is possible as long as we require the asymptotic accuracy of the system in terms
of the Knudsen number to stay the same. The asymptotic accuracy is given by the comparison of the Chap-
man–Enskog-expansion of the R13-system with the Chapman–Enskog-expansion of the Boltzmann equation.
We shall use the fact that higher order terms in the R13 equations may be changed without changing the accu-
racy. Linear stability is also unaffected by this, since only non-linear terms are changed. This is sufficient to
find a stable system suitable for the boundary conditions that are available.

In general, emphasis will be put on the additional inherent conditions for specific variables that are
obtained by this method. These relations represent bulk solutions of moments that can not produce a bound-
ary layer due to restriction to a finite set of moments. We include an interpretation of the whole method along
these lines.

After finding a suitable combination of boundary conditions and transformed equations, a numerical
method is developed based on the R13-system written as a first order system. Incorporation of the boundary
conditions is straightforward. An empirical convergence study shows second order numerical accuracy of the
method. Various simulation results for channel flows of Couette- and Poiseuille-type demonstrate stable and
oscillation-free behavior. Comparison with DSMC simulations of Boltzmann’s equation, see [4], show accu-
rate agreement for slow flows and moderate Knudsen numbers.

The rest of the paper is organized as follows: Section 2 presents the R13 equations and their specialization
to steady shear flow. It also discusses the asymptotic accuracy. Section 3 is devoted to the theory of boundary
conditions with physical and mathematical remarks, a review of kinetic boundary conditions and the presen-
tation of our major hypotheses. The linear case of the R13-system is studied in detail in Section 4. The insights
of the linear case are generalized to the non-linear case in two steps in Sections 5.1 and 5.2. A deeper inter-
pretation of the formal procedure is given in Section 5.4. The numerical method is described in Section 6
and results are discussed in Section 7. Appendix provides a number of detailed bulky matrices which are left
out in the main part for readability.

2. R13 equations

Details of the derivation of the R13 equations for rarefied/micro-flows can be found in [30] and the text-
book [26]. Here we only give the final equations.
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2.1. Full equations

The basis of the R13 system is given by the conservation laws of mass, momentum and energy,
otqþ divð.vÞ ¼ 0;

otqvþ divðqvvT þ pIþ rÞ ¼ qf;

ot qeþ 1

2
qv2

� �
þ div qevþ 1

2
qv2vþ pvþ rvþ q

� �
¼ qf � v;

ð1Þ
where we take the internal energy qe ¼ 3
2
p for monatomic gases and the temperature h (in energy units)

satisfies the ideal gas law p ¼ qh. An external body force density is given by qf. The R13 equations can
be viewed as a generalized constitutive theory for stress tensor r and heat flux q. The standard local rela-
tions of Navier–Stokes and Fourier are extended to form full evolution equations for rij and qi. They are
given by
orij

ot
þ orijvk

oxk
þ 4

5

oqhi
oxji
þ 2p

ovhi
oxji
þ 2rkhi

ovji

oxk
þ omijk

oxk
¼ � p

l
rij ð2Þ
for the stress tensor, and
oqi

ot
þ oqivk

oxk
þ p

oðrik=qÞ
oxk

þ 5

2
ðpdik þ rikÞ

oh
oxk
� rij

.
orjk

oxk
þ qk

ovi

oxk
þ mijk þ

6

5
qðidjkÞ

� �
ovj

oxk
þ 1

2

obRik

oxk

¼ � 2p
3l

qi ð3Þ
for the heat flux. Both equations form quasi-linear first order equations with relaxation. The collision fre-
quency is given by p=l with viscosity l. Indices with angular brackets indicate the trace-free symmetric parts
of a tensor, while round brackets indicate symmetrized tensors [26].

The remaining unspecified quantities are mijk and bRij. They stem from higher moments contributions in
the transfer equations of Boltzmann’s equation. Neglecting these contributions, i.e., setting mijk ¼ bRij ¼ 0,
turns the system (1)–(3) into the classical 13-moment-case of Grad [10,11]. In [30], gradient expressions are
derived for mijk and R̂ij which regularize Grad’s equations and turn them into a highly accurate micro-flow
model. The regularization procedure gives
mijk ¼ �2l
oðrhij=qÞ

oxki
þ 8

10p
qhir

ðNSFÞ
jki ;

Rij ¼ �
24

5
l

oðqhj=qÞ
oxji

þ 32

25p
qhiq

ðNSFÞ
ji þ 24

7q
rkhir

ðNSFÞ
jik ;

R ¼ �12l
oðqk=qÞ

oxk
þ 8

p
qkqðNSFÞ

k þ 6

q
rijr

ðNSFÞ
ij ;

ð4Þ
with bRij ¼ Rij þ 1
3
Rdij and the abbreviations
rðNSFÞ
ij ¼ �2l

ovhi
oxji

; qðNSFÞ
i ¼ � 15

4
l

oh
oxi

: ð5Þ
Note the special structure in (4): The leading expressions are gradient terms that produce Laplacians of
stress and heat flux in their respective equations in (2)/(3). This is similar to the Navier–Stokes–Fourier
system which can be viewed as regularization of the Euler equations. The next terms in (4) are products
of the stress and heat flux with velocity and temperature gradients. In (4) we left out higher order contri-
butions following [28].

Eqs. (1)–(4) with (5) form the system of regularized 13-moment-equations.
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2.2. Relation to boltzmann’s equation and Navier–Stokes–Fourier

We will briefly discuss how the R13 system is related to the equations of Navier–Stokes–Fourier and Boltz-
mann’s equation. These results were obtained in [30,36] based on asymptotic analysis.

The mean collision frequency m ¼ p
l appears on the right hand side of Eqs. (2) and (3). Introducing the mean

free path at a reference state by
kR ¼
lR

ffiffiffiffiffi
hR

p

pR

; ð6Þ
we define the Knudsen number
Kn ¼ kR

L
¼ lR

ffiffiffiffiffi
hR

p

pRL
ð7Þ
based on a macroscopic length scale L. The isothermal equilibrium speed of sound
ffiffiffiffiffi
hR

p
gives a natural velocity

scale for the equations and all moment variables can be scaled by a reference density qR and appropriate pow-
ers of

ffiffiffiffiffi
hR

p
. By defining a time scale by T ¼ L=

ffiffiffiffiffi
hR

p
we can write the equations in dimensionless form and the

Knudsen number only appears as factor 1=Kn at the right hand side.
Based on the Knudsen number we can derive an asymptotic accuracy of the R13 system with respect to

Boltzmann’s equation. This is done by expanding stress tensor and heat flux in powers of Kn < 1 for both
R13 and Boltzmann. In the case of Maxwell molecules we find
krðR13Þ � rðBoltzÞk þ kqðR13Þ � qðBoltzÞk ¼ OðKn4Þ ð8Þ
with any appropriate norms for stress and heat flux. This means that any R13 result will differ asymptotically
from a full Boltzmann simulation only in OðKn4Þ in the Chapman–Enskog sense. In the language of [28] this
corresponds to third order equations. For comparison we note that for the laws of Navier–Stokes and Fourier
(5) we obtain only
krðNSFÞ � rðBoltzÞk þ kqðNSFÞ � qðBoltzÞk ¼ OðKn2Þ: ð9Þ

This also shows that NSF is asymptotically included in R13 for small Knudsen numbers, i.e., for very small
Knudsen numbers the R13 system will essentially behave like the NSF equations.

The viscosity l in (2) and (3) links the R13 system to NSF in the asymptotic limit. For power law potentials
the viscosity is given by
l ¼ lR
h
hR

� �x

ð10Þ
with a temperature exponent 0:5 6 x 6 1.

2.3. Equations for steady shear flow

This paper considers processes that fall into the class of steady shear flows, including steady Couette or
Poiseuille flows. For the R13 system, shear flow is a multi-dimensional phenomenon in the sense that it pro-
duces a fully multi-dimensional reaction for the stress tensor and heat flux. Introducing xi¼̂ðx; y; zÞ, we con-
sider shear flow which is homogeneous in z-direction and define the remaining non-vanishing parts of
stress tensor and heat flux as
r ¼
rxx r 0

r ryy 0

0 0 rzz

0B@
1CA; q ¼ ðqx; qy ; 0Þ; ð11Þ
where r ¼ rxy ¼ ryx and rzz ¼ � 1
2
ðrxx þ ryyÞ since r must be trace-free. For the velocity we assume vy ¼ vz ¼ 0

and



Fig. 1. General shear flow setting. The gas flows between infinte plates with velocities vð0;1ÞW and temperature hð0;1ÞW . The force F is given by
gravity or a pressure gradient.
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vðx; y; zÞ ¼ ðvxðyÞ; 0; 0Þ: ð12Þ

The force acts only in x-direction, f ¼ ðF ; 0; 0Þ. This setting is valid for channel flows as displayed in Fig. 1.
The gas is confined between two infinite plates at distance L and is moving solely in x-direction. As driving
force either a force F in x-direction is given or the walls are moving with x-velocities vð0;1ÞW . In the simplest case
the force can be viewed as gravity but it may also stem from a homogeneous pressure gradient along the x-
axis. Additionally, the walls may be kept at different temperatures hð0;1ÞW .

In this setting we have eight independent variables in the R13 equations, namely fq; vx; p; rxx; ryy ; r; qx; qyg.
Optionally, the pressure p can be replaced by the temperature h. The five remaining relevant constitutive quan-
tities are fmxxy ;mxyy ;myyy ; bRxy ; bRyyg. The system (1)–(4) reduces to 13 first order non-linear ordinary differential
equations.

The core equations are given by the conservation laws
oyr ¼ qF ; ð13Þ
oyðp þ ryyÞ ¼ 0; ð14Þ
oyqy þ royvx ¼ 0; ð15Þ
the balance of stress tensor
2royvx þ
2

5
oyqy þ oymxxy ¼ �

p
l

rxx; ð16Þ

6

5
oyqy þ oymyyy ¼ �

p
l

ryy ; ð17Þ

ðp þ ryyÞoyvx þ
2

5
oyqx þ oymxyy ¼ �

p
l

r; ð18Þ
and heat flux balance
p � rxx

q
oyrþ

5

2
royh�

r
q

oyryy �
r
q

hoyqþ mxxy þ
7

5
qy

� �
oyvx þ

1

2
oy
bRxy ¼ �

2p
3l

qx; ð19Þ

p � ryy

q
oyryy þ

5

2
ðp þ ryyÞoyh�

r
q

oyr�
ryy

q
hoyqþ mxyy þ

2

5
qx

� �
oyvx þ

1

2
oy
bRyy ¼ �

2p
3l

qy : ð20Þ
For the constitutive equations we note that (5) has non-vanishing contributions only for rðNSFÞ ¼ �loyvx and
qðNSFÞ

y ¼ � 15
4
loyh. With this we find from (4) five equations for mijk and bRij,
� p
l

mxxy ¼
2

3
poyðrxx=qÞ �

4

15
poyðryy=qÞ þ

32

75
qxoyvx; ð21Þ
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� p
l

myyy ¼
6

5
poyðryy=qÞ �

8

25
qxoyvx; ð22Þ

� p
l

mxyy ¼
16

15
poyðr=qÞ þ

32

75
qyoyvx; ð23Þ
and
� p
l
bRxy ¼

12

5
poyðqx=qÞ þ

12

5
qxoyhþ

12

7
hðrxx þ ryyÞoyvx; ð24Þ

� p
l
bRyy ¼

36

5
poyðqy=qÞ þ

66

5
qyoyhþ

36

7
hroyvx: ð25Þ
The system (13)–(25) has to be complemented by boundary conditions.

3. Theory of boundary conditions

3.1. Mathematical remarks

The above system (13)–(25) can be written in matrix form as
AðUÞoyU ¼ PðUÞ; ð26Þ

where U ¼ fq; vx; p; rxx; ryy ; r; qx; qy ;mxxy ;myyy ;mxyy ;Rxy ;Ryyg. The full system is displayed in (91) in Appendix.
The matrix A is rather bulky but it provides a good overview about the coupling in the equations.

Consider the formal initial value problem for (26), i.e., the one-sided boundary value problem where we
only prescribe values at y ¼ 0. If N is the dimension of the system and the matrix AðUÞ has an eigenvalue
k ¼ 0 with multiplicity a, then we can describe N � a initial conditions for U. Indeed, the zero eigenvalue
induces left eigenvectors fxigi¼1;...a with xi � AðUÞ ¼ 0, hence, if applied to the system (26), conditions of the
form xi � PðUÞ ¼ 0 for i ¼ 1; . . . a. These conditions can be viewed as constraints for U, which reduce the num-
ber of possible initial conditions to N � a. In practice, these conditions can be used to eliminate a components
of the variable vector U and transform (26) into a system of smaller dimension with non-singular matrix. This
strategy will be exploited in the next sections for the R13 equations.

The case of a boundary value problem is threatened by non-existence and non-uniqueness. However, in the
linear case the argument of the initial value problem carries over and one may prescribe N � a boundary con-
ditions altogether, i.e., if there are n conditions on the left side, only N � a� n conditions on the right side are
allowed. In the non-linear case, we are confident that the physical nature of the problem provides us with exis-
tence and uniqueness, but rigorous statements for the full system are hard to obtain.

3.2. Kinetic boundary conditions

In kinetic theory the fundamental quantity is the velocity distribution function f ðc; x; tÞ which is governed
by Boltzmann’s equation. Wall boundaries require that the incoming half of the distribution function (with
n � c > 0; n wall normal pointing into the gas) have to be prescribed.

The most common boundary condition for f is Maxwell’s accommodation model [18]. It assumes that a
fraction v of the particles that hit the wall are accommodated at the wall and injected into the gas according
to a distribution function of the wall fW. This distribution function is further assumed to be Maxwellian
fWðcÞ ¼
qW=mffiffiffiffiffiffiffiffiffiffiffi
2phW

p 3
exp �ðc� vWÞ2

2hW

 !
ð27Þ
with hW and vW given by the known temperature and velocity of the wall. The ‘‘wall density’’ qW follows from
particle conservation at the wall. The remaining fraction ð1� vÞ of the particles are specularily reflected. Since
the particles that hit the wall are described by a distribution function fgas the reflected part will satisfy a anal-
ogous distribution function f ð�Þgas which follows from fgas with accordingly transformed velocities.
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From this model the velocity distribution function ~f ðcÞ in the infinitesimal neighborhood of the wall is
given by
Fig. 2.
near e
NSF o
~f ðcÞ ¼
vfWðcÞ þ ð1� vÞf ð�Þgas ðcÞ n � ðc� vWÞ > 0;

fgasðcÞ n � ðc� vWÞ < 0;

(
ð28Þ
where n is the wall normal pointing into the gas. This boundary conditions is used in the majority of simula-
tions based on Boltzmann equation or DSMC [4]. The accommodation coefficient v describes the wall char-
acteristics and has to be given or measured. The case of v ¼ 0 (specular reflection) represents the
generalization of an adiabatic wall (no heat flux, no shear stress) to the kinetic picture.
3.3. Physical remarks

The boundary in shear flow problems is governed by two well known effects, velocity slip and temperature
jump and the Knudsen layer, see, e.g., the text books [7] or [26]. Both phenomena become relevant only for
rarefied or micro-flows, see [14].

Fig. 2 shows a generic sketch of the situation at the wall. The temperature and velocity jump leads to the
fact that the values for hW and vW in the wall will not be assumed in the gas due to lack of collisions. These
jumps cannot be deduced from the transport equations alone, but need to be introduced by the model of the
boundary conditions. The Knudsen layer links the strong non-equilibrium at the wall to the bulk solution
away from the boundary. The non-equilibrium at the wall can be deduced from the boundary condition
for the distribution function (28). Directly at the wall the distribution function is discontinuous in velocity
space and as such far from a Maxwellian representing equilibrium. Only after sufficiently many collisions,
away from the wall a distribution function close to a Maxwellian will be present. The solution in some distance
from the wall is called bulk solution [33].

Different fluid models will describe the Knudsen layer with different accuracy. The equations of Navier–
Stokes–Fourier cannot describe a Knudsen layer at all. In this case, the jump conditions are adjusted such that
the solution fits to the bulk solution [25], see Fig. 2. The R13 equations allow for some part of the Knudsen
layer but misses out higher order modes [27]. Hence, any jump conditions for R13 have to be modified in a
way similar to that of NSF.
3.4. Grad’s theory

Any equations for moments are derived from kinetic gas theory. The fundamental assumption is that the
kinetic model (28) will also supply meaningful boundary conditions for moment-equations.
Example of velocity or temperature jump and Knudsen layer near the boundary. Only a few mean free paths away from the wall a
quilibrium solution (bulk solution) is obtained. Velocity and temperature jumps have to be corrected for macroscopic models like
r R13.
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3.4.1. Accommodation model

When deriving moment-equations Grad also discussed boundary conditions, see [10,11]. The idea is to take
the accommodation model (28) seriously and compute boundary conditions for moments from it.

Indeed, integration of the wall distribution function (28) after multiplication with any velocity function
wðCÞ results in an equation relating moments at the wall to the wall properties given by fW. We define
X ¼ fC 2 R3g and X� ¼ fC 2 R3jC � n?0g with wall normal n as integration domains and find after some
rearrangement
Z

X
wðCÞ~f ðCÞdC ¼

Z
X�
ðwðCÞ þ ð1� vÞw�ðCÞÞfgasðCÞdCþ v

Z
Xþ

wðCW � VÞfWðCWÞdCW: ð29Þ
The first two integrals are evaluated in the frame moving with the gas average velocity vgas and the particle
velocity c is transformed into the peculiar velocity C ¼ c� vgas. The last integral is evaluated in the frame mov-
ing with the velocity of the wall vW and the peculiar velocity is given by CW ¼ c� vW. Due to these transfor-
mations the slip velocity V ¼ vgas � vW appears which satisfies n � V ¼ 0. The function w� is defined by
w�ðCÞ ¼ wðC� 2ðn � CÞnÞ ð30Þ
and represents the evaluation of w for the specularily reflected values of C.
The relation (29) can now be evaluated by assuming a specific model for the distribution function, e.g., the

regularized 13 moment distribution function fR13. We set ~f ¼ fgas ¼ fR13 and different polynomials for w give
boundary conditions for moments. This strategy is proposed in [26] and used in [12]. We will further specify
and evaluate the strategy in the following.
3.4.2. Shear flow boundary conditions

Before we continue, we specify the wall normal n ¼ ð0; 1; 0Þ and the wall velocity vW ¼ ðvW; 0; 0Þ. This cor-
responds to the lower wall in Fig. 1. With these specifications we also have w�ðCÞ ¼ wðCx;�Cy ;CzÞ. The gen-
eralization to arbitrary walls is straightforward.

The problem with (29) is that it describes too many boundary conditions if we count it on both walls for all
functions w that produce a variable of the theory. Indeed, if we fix ~f ¼ fgas ¼ fR13, every polynomial for w
would give us a new relation for our moments on the boundary. The first step is to restrict ourselves to those
w that represent fluxes in our equations. This is motivated from the theory of balance laws which states that at
the boundary fluxes, not variables, need to be prescribed. The C-polynomials that occur as y-fluxes in the two-
dimensional R13 equations are fCy ;CxCy ;C

2
y ;C

2Cy ;C
2
xCy ;C

3
y ;CxC

2
y ;C

2CxCy ;C
2C2

yg. To restrict this list further,
we follow an important observation of Grad [10]: If there is no accommodation at all, v ¼ 0, any polynomial
of even degree in Cy will produce an identity in (29). Hence, moments of even degree cannot be controlled
when v ¼ 0. In order to have continuity of the boundary conditions for v! 0, we must formulate boundary
conditions only for w’s that are of odd degree in Cy .

This leaves us with six candidates for w which we rearrange and linearly recombine to give
wðCÞ 2 Cy ;CxCy ; ðC2 � 7hÞCxCy ;C
2Cy ; C2

y �
3

5
C2

� �
Cy ; C2

x � C2
z �

2

5
C2

� �
Cy

� �
: ð31Þ
These polynomials represent the fluxes fvy ; r;Rxy ; qy ;myyy ;mxxy � myzzg. The first one, vy , gives the conservation
of mass at the wall and, thus, a relation for the value of qW in (27). For the distribution function of the R13
equations, see Appendix C, we find
P :¼
ffiffiffi
h
p ffiffiffiffiffiffi

hW

p
qW ¼ qhþ ryy

2
� Ryy

28h
� R

120h
: ð32Þ
The remaining five boundary conditions following from (29) and (31) with V ¼ vx � vW read
r ¼ �ny

ffiffiffiffiffiffi
2

ph

r
v

2� v
PV þ 1

2
mxyy þ

1

5
qx

� �
; ð33Þ
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Rxy ¼ ny

ffiffiffiffiffiffi
2

ph

r
v

2� v
PhV � 1

2
hmxyy �

11

5
hqx � PV 3 þ 6P ðh� hWÞV

� �
; ð34Þ

qy ¼ �ny

ffiffiffiffiffiffi
2

ph

r
v

2� v
2P ðh� hWÞ þ

5

28
Ryy þ

1

15
Rþ 1

2
hryy �

1

2
PV 2

� �
; ð35Þ

myyy ¼ ny

ffiffiffiffiffiffi
2

ph

r
v

2� v
2

5
Pðh� hWÞ �

1

14
Ryy þ

1

75
R� 7

5
hryy �

3

5
PV 2

� �
; ð36Þ

mxxy � myzz ¼ �ny

ffiffiffiffiffiffi
2

ph

r
v

2� v
Rxx � Rzz

14
þ hðrxx � rzzÞ � PV 2

� �
; ð37Þ
where we used a special ordering in correspondence with the coupling discussed below. Following the
setting of Fig. 1 these boundary conditions have to hold on both sides of the channel with ny ¼ �1
for lower (left) and upper (right) wall, respectively. Generalization to an arbitrary wall of a computational
domain is straight forward. For the coupling of the quantities emphasis lies on linear terms. No linear
terms lead to a coupling across all boundary conditions. The first two equations couple
fvx; r; qy ;mxyy ;Rxyg while the third and fourth equations couple fh; qx; ryy;Ryy ;myyyg. The last equation
couples essentially frxx;Rxx;mxxyg.

The steady shear flow setting gives rise to one additional condition. In total, the mass between the walls
should equal a given value M0
Z L=2

�L=2

qðyÞdy ¼ M0; ð38Þ
which can be viewed as generalized boundary condition. If vy were allowed to be non-zero, the balance of mass
would join the set of equations. In that case yet another boundary condition would be required and the con-
dition (38) would be replaced by the boundary condition vy ¼ 0 on both walls. This also shows how the cur-
rent shear flow setting can be extended to more generalized situations.

The boundary conditions (33)–(37) give explicit expressions for the relevant fluxes in terms of the non-flux
quantities. The first condition can be identified as slip condition combining essentially the slip velocity V with
the shear stress r, i.e., the gradient of velocity in the NSF model. Similarly, the third equation gives the tem-
perature jump h� hW in terms of the heat flux qy , i.e., the gradient of temperature in NSF. The other equations
represent jump conditions for higher order moments.

The accommodation coefficient v appears as factor in each single equation. Already Grad [10] proposed to
use different values of v in each equation of (33)–(37), to reflect the fact that moment-equations require a mod-
ification as indicated in Fig. 2. We argue that each flux is accommodated differently at the wall. Correspond-
ingly, we substitute the factor v=ð2� vÞ in each equation by coefficients bi where i 2 fr;Rxy ; qy ;myyy ;mxxyg. The
standard value of these coefficients is unity but they may be used as fitting parameters. The same strategy was
used in [12] on a different set of boundary conditions.
3.5. Hypotheses

Investigating the matrix form of the R13 Eq. (91) reveals that in general det AðUÞ 6¼ 0, hence, the system
requires a full set of 13 boundary conditions in total. With (33)–(38), we have found 11 conditions. The ques-
tion arises, how this lack of conditions should be handled?
3.5.1. Coherence of boundary conditions

Interestingly, it turns out that det AðUÞ 6¼ 0 is not valid for all values of U. When evaluating the linear case
AðU0Þ (see below) we find a zero eigenvalue with multiplicity a ¼ 2. As soon as there are non-linear terms in
the matrix this zero eigenvalue is lost. It follows that in the linear case all existing boundary conditions are
sufficient and the R13-system with kinetic boundary conditions is well-posed.
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This fact strengthens our confidence in the boundary conditions (33)–(37) and leads to the following
hypothesis: The transition from a process in the linear regime (small velocity/temperature differences) to a

non-linear process should not change the number of boundary conditions. That is, describing a non-linear process
with R13 should not require more boundary conditions than describing a linear scenario. Otherwise, if this
were not the case, the description could not be coherent, since smallest non-linear contributions in the equa-
tions would require an additional equation that needed to be dropped in the linear case. To be precise, the
kernel of the zero eigenvalues of AðU0Þ imposes restrictions on the fields as described in Section 3.1 that must
be viewed as supplements to the boundary conditions. In general, these kernel conditions would contradict
any additional accommodation boundary conditions. For additional interpretation of the situation, see Sec-
tion 5.4. The hypothesis concerns only the number of boundary conditions. Clearly, there will be non-linear
contributions within the given conditions which are relevant or irrelevant depending on the non-linearity of
the process.
3.5.2. High-order equivalence

With the above hypothesis we render the boundary conditions (33)–(37) more fundamental than the system
of equations. Indeed, we are now left with the question, how to modify the equations such that AðUÞ possesses
a zero eigenvalue with multiplicity a ¼ 2 for all values of U, since only then the boundary conditions will be
sufficient.

The reason for success of this approach lies in the fact that the equations allow more flexibility than the
boundary conditions. We require the R13 equations to exhibit an asymptotic accuracy of fourth order as
described in Section 2.2. It was shown by the order-of-magnitude approach in [28] that the equations may
be altered in a certain way without influencing the asymptotic accuracy. This was also employed in [6] to sta-
bilize the Burnett equations. Two systems with the same asymptotic accuracy will be called equivalent. The
task is to find an equivalent system for (13)–(25) such that the resulting eAðUÞ will allow the boundary condi-
tions (33)–(37).

The kernel conditions of the transformed system correspond to bulk solutions. They bear relevance also for
the original R13 equations and can be used as additional boundary conditions for the original system. An
interpretation of the result is given later in Section 5.4.

The order-of-magnitude approach (see also [26]) assigns powers of Kn to every moment to indicate the rel-
evance with which the moments enter the asymptotic accuracy. In this sense rij and qi are first order quantities
and mijk and bRij are of second order. Furthermore, the R13 constitutive quantities mijk and bRij enter the asymp-
totic accuracy with an additional factor Kn. Hence, the constitutive equations for mijk and bRij may be altered
by terms of OðKn3Þ without reducing the asymptotic accuracy. We will see below that this is sufficient to con-
struct a system that suits the boundary conditions.
4. Linear case

The linear case gives an enormous insight into the behavior and coupling of the R13 equation for shear
flow, see also [31]. We linearize the equations around a given rest state at reference density, temperature
and pressure
ðq; h; pÞ ¼ ðqR; hR; pRÞ; ð39Þ
all other variables vanish in the reference state.

4.1. Equations

After linearization, the equations uncover a striking simplicity by decomposing into three decoupled
blocks. The first block describes the velocity part with the balances of vx; r and qx and constitutive equa-
tions for mxyy and bRxy , the second block describes the temperature part with balances of h; qy , and ryy with
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constitutive equations for bRyy and myyy . These two blocks have mathematically identical structures and the
role of the variables could be directly exchanged. The third block is given by the balance of vy ; rxx with
constitutive equations for mxxy . This block is influenced by the temperature part.

To display the decoupling we sort the variable vector as
U ¼ fvx; r; qx;mxyy ;Rxy ; h; qy ; ryy ; bRyy ;myyy ; q; rxx;mxxyg ð40Þ
for which the linearized system can be written in the form AoxU ¼ PðUÞ with the matrix
, ð41Þ
where the different blocks are indicated by solid lines. The right hand side of the system reads
PðUÞ ¼ � pR

lR

� lR
pR

F ; r; 2
3
qx; mxyy ; Rxy ; 0;

2
3
qy ; ryy ; Ryy ; myyy ; 0; rxx; mxxy

� �T

: ð42Þ
Comparison of the first and second diagonal block in (41) shows the identical structure of the velocity
and temperature parts. Both parts are governed dominantly by two classical variables, ðvx; rÞ and ðh; qyÞ,
respectively, which behave essentially in an intuitive way. In NSF the second variable is related to the
gradient of the first. The third variable in both parts, qx and ryy , respectively, is given by a seemingly
classical variable which however plays an non-intuitive role. It represents a heat flux produced by a
velocity shear and a normal stress due to temperature difference. Both are typical bulk effects in rarefied
flows only triggered by boundary conditions. Through these variables the classical variables are coupled to
the high-order internal quantities, mxyy and bRxy , and bRyy and myyy , respectively. From tensorial consider-
ations the first block can be identified with mixed normal/tangential variables, while the second block cou-
ples the purely normal variables. The last block combines the density and purely tangential tensorial
variables.

The matrix A has an eigenvalue k ¼ 0 with multiplicity a ¼ 2 and two corresponding left eigenvectors
x1 ¼
16

15
pR; 0; 0;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0

� �
; ð43Þ

x2 ¼
�

0; 0; 0; 0; 0;
36

5
hR; 0; 0;�1; 0; 0; 0; 0

�
; ð44Þ
which satisfy x1;2 � A ¼ 0. These eigenvectors induce conditions on the variables which are given by
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x1 � PðUÞ ¼ 0 ) mxyy ¼
16

15
lRF ; ð45Þ

x2 � PðUÞ ¼ 0 ) R̂yy ¼ 0: ð46Þ
These relations affect the velocity part through mxyy and the temperature part through bRyy . Both
quantities can be inserted into the balance equations for r and qy , respectively, and hereafter be dropped
from the variable vector. As a result, the fourth and ninth row and column of the matrix (41) can be
dropped, as well as the fourth and ninth entry of PðUÞ. The new system consists of two
decoupled 4� 4 blocks for the velocity and temperature parts, and the remaining three equations for den-
sity and rxx=mxxy [31].

4.2. Boundary conditions

For the linear case, the boundary condition (33)–(37) must be linearized as well, so that all terms non-linear
in slip velocity V and temperature jump h� hW vanish. Factors depending on density, temperature and pres-
sure are replaced by their reference values (39).

After elimination of mxyy and Ryy the system fits seamlessly to the boundary conditions. The velocity part
requires four boundary conditions and these are given by (33) and (34) on both sides of the channel. Similarly,
for the temperature part (35) and (36) are used. Note, that the decoupling of the boundary conditions perfectly
mimics the decoupling of the equations in the linear case.

The last two equations of the linear system, which involve rxx and mxxy , can be solved after the temperature
part for diagnostic purposes. These equations need two boundary conditions, which are given by (37) on both
sides of the channel. Finally, the density can be computed by integrating the momentum balance for vy and
condition (38).

4.3. Velocity part

As a reference we give the explicit equations for the velocity part in the linearized case. The variables are
U ¼ fvx; r; qx;Rxyg and the system reads
0 1
qR

0 0

pR 0 2
5

0

0 hR 0 1
2

0 0 12
5
hR 0

0BBBB@
1CCCCA

oyvx

oyr

oyqx

oyRxy

0BBB@
1CCCA ¼

F

� pR
lR

r

� 2
3

pR
lR

qx

� pR
lR

Rxy

0BBBB@
1CCCCA ð47Þ
while the boundary conditions on the lower and upper wall, index (0; 1), are given by
rj0;1 ¼ �

ffiffiffiffiffiffiffiffi
2

phR

s
v

2� v

�
pR vx � vWð Þ þ 8

15
lRF þ 1

5
qx

�				
0;1

; ð48Þ

Rxy j0;1 ¼ �
ffiffiffiffiffiffiffi
2hR

p

r
v

2� v
�pRðvx � vWÞ þ

8

15
lRF þ 11

5
qx

� �				
0;1

: ð49Þ
The general analytical solution is easy to obtain but rather lengthy to write down. Thus, we omit it here, see
[31] for special cases.

5. Non-linear case

When studying the non-linear case we consider first the force-less situation
F ¼ 0: ð50Þ
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The force will be added in Section 5.3. We tackle the non-linearity in two steps, first with the restriction of
linear constitutive equations for mijk and Rij, and after this fully non-linear.

5.1. Semi-non-linear

In this section the balance equations of momentum, energy, stress and heat flux are considered fully non-
linear, while only the leading linear expression is kept in the constitutive Eq. (21)–(25). First, we simplify the
balance equations for qx and qy by adding (14) times r

q h to (19) and (14) times
ryy

q h to (20). This eliminates the
occurrence of the density gradient.

We start with the full variable vector (40); the system AðUÞoyU ¼ P ðUÞ is now built from matrix and right
hand side given by
ð51Þ

and
PðUÞ ¼ � p
l

0; r; 2
3
qx; mxyy ; bRxy ; 0;

2
3
qy ; ryy ; bRyy ; myyy ; 0; rxx; mxxy

� �T

: ð52Þ
The solid lines indicate the blocks known from the linear case. However, now there appear non-linear coupling
terms and the velocity and temperature parts can no longer be solved independently. The major coupling is
introduced through the dissipation term royvx in the energy Eq. (15). Further coupling is present in the balance
equation for heat flux. Some non-linear contributions also enter the diagonal blocks themselves.

We proceed to eliminate some variables analogously to the linear case. The matrix AðUÞ again has the
eigenvalue k ¼ 0 with multiplicity a ¼ 2, however, the eigenspace is only one-dimensional. We find
x1 ¼
16

15
p; 0; 0;�1; 0; 0; 0; 0; 0; 0; 0; 0; 0

� �
ð53Þ
satisfying x1 � AðUÞ ¼ 0. Evaluating this on the system we obtain
x1 � PðUÞ ¼ 0 ) mxyy ¼ 0 ð54Þ

in agreement with the linear case and F ¼ 0. This allows to eliminate mxyy and drop the fourth row and column
in AðUÞ. This new reduced matrix still has an zero eigenvalue and a left null-space
x2 ¼ 0;�r; 0;
1

6

r
h
; p þ ryy ; 0; 0;�

5

36

p þ ryy

h
; 0; 0; 0; 0

� �
; ð55Þ
which can be used to calculate an expression for Ryy
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x2 � PðUÞ ¼ 0 ) Ryy ¼
6

5
r

Rxy � 6hr
p þ ryy

: ð56Þ
Note, that this is a fully non-linear statement and it reduces to Ryy ¼ 0, when in the linear case (46). Hence, the
linear case is included.

The expression (56) can be used to eliminate Ryy from the equations and drop the ninth row and column
from the matrix (51). The final system requires 11 boundary conditions given by the kinetic relations (33)–
(37) on both sides of the channel and mass conservation (38) like in the linear case.
5.2. Non-linear

As soon as any of the non-linear contributions of the constitutive Eqs. (21)–(25) are included in the matrix
AðUÞ its determinant becomes non-zero. In principle, this makes 13 boundary condition necessary. However,
according to our hypothesis we reformulate the system such that as many boundary conditions are required as
in the linear and semi-non-linear case.

To be precise, Eqs. (21)–(25) for fmxxy ;myyy ;mxyy ;Rxy ;Ryyg need to be altered and all non-linear terms recast
into algebraic form. These algebraic terms then move to the right hand side of the system into PðUÞ, while the
matrix AðUÞ will be the same as in (51). This transformation is possible since the change produces a system
that still is of fourth order asymptotic accuracy.

As a first step we eliminate the density gradient from the equations for mijk and Rij (21)–(25) by use of the
momentum balance (14) h

q oyq ¼ �oyh� 1
q oyryy . Temperature and velocity gradients can be substituted by heat

flux and stress
loyh ¼ �
4

15
qðNSFÞ

y ¼ � 4

15
qy þOðKn2Þ; ð57Þ

loyvx ¼ �rðNSFÞ ¼ �rþOðKn2Þ; ð58Þ

which introduces an asymptotic accuracy error of OðKn2Þ. However, these expressions are multiplied in Eqs.
(21)–(25) by stress and heat flux, both first order quantities, thus the overall error to mijk and Rij is OðKn3Þ.
This is sufficient for an asymptotically equivalent system, see Section 3.5.2. The remaining gradients of the
normal stress ryy are of the form
l
q

ryy

p
oyryy ¼ OðKn3Þ ð59Þ
and may be dropped entirely without changing accuracy. Thus, the final equations which replace (21)–(25) are
given by
� p
l

mxxy þ
8

225p
ð2ryyqy � 5rxxqy � 12rqxÞ

� �
¼ 2

3
hoyrxx �

4

15
hoyryy ; ð60Þ

� p
l

myyy �
8

25p
ryyqy � rqx


 �� �
¼ 6

5
hoyryy ; ð61Þ

� p
l

mxyy �
32

45p
rqy

� �
¼ 16

15
hoyr; ð62Þ
for mijk and
� p
l
bRxy �

32

25p
qxqy �

12

7q
ðrxx þ ryyÞr

� �
¼ 12

5
hoyqx; ð63Þ

� p
l
bRyy �

136

25p
qyqy �

36

7q
r2

� �
¼ 36

5
hoyqy ð64Þ
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for Rij. We note, that this transformation can also be performed on the full three-dimensional equations, as
well as with the variants of R13 given in [26]. Note, that the steady energy balance is needed to eliminate den-
sity gradients. The influence of this fact needs to be studied in future.

The new algebraic terms change the right hand side of our system to
PðUÞ ¼ � p
l

0; r; 2
3
qx; mxyy � 32

45

rqy

p ;
bRxy � 32

25

qxqy

p � 12
7

ðrxxþryy Þr
q ;

�
0; 2

3
qy ; ryy ; bRyy � 136

25

q2
y

p � 36
7

r2

q ; myyy � 8
25

ryy qy�rqx

p ; ð65Þ

0; rxx; mxxy þ 8
225

2ryy qy�5rxxqy�12rqx

p

�T
while the matrix A is still given by (51). Hence, the null-space vector x1 is still the same, but now we find
x1 � PðUÞ ¼ 0 ) mxyy ¼
32

45

rqy

p
; ð66Þ
which shows a non-linear relation for mxyy . Introducing this relation for mxyy into the balance equation for r
(18) we obtain
p þ ryy


 �
oyvx þ

2

5
oyqx þ

32

45

qy

p
oyrþ

32

45

r
p

oyqy ¼ �
p
l

r: ð67Þ
The expression containing the pressure gradient rqyoyp ¼ �rqyoyryy (momentum balance) is of third order in
Kn and is neglected in the above equation for r. Using this modified balance equation for r the variable mxyy

drops out of the system and, as before, the fourth row and column of the matrix can be deleted.
However, the new terms from the balance equation for r change the resulting new matrix. Interestingly, we

still find a null-space spanned by the vector
x2 ¼
32

45

qyr

h
;�r; 0;

r
6h
; p þ ryy þ

32

45

r2

p
; 0; 0;� 5

36

p þ ryy

h
; 0; 0; 0; 0

� �
; ð68Þ
where expressions of third and higher order have been suppressed already. This null-vector yields
x2 � PðUÞ ¼ 0 ) bRyy ¼
136

25p
q2

y �
72

35q
r2 ð69Þ
as expression for bRyy up to third order. Finally, we insert Ryy into the balance of qy
hoyryy þ
5

2
p þ 7

2
ryy �

36

35

r2

p

� �
oyh�

107

35

r
q

oyrþ
136

25

qy

p
oyqy þ mxyy þ

2

5
qx

� �
oyvx ¼ �

2p
3l

qy ð70Þ
and bRyy is eliminated from the system.
With Eqs. (67) and (70), and without mxyy and bRyy , the final fully non-linear system AðUÞoxU ¼ PðUÞ is

shown in Appendix A in (93) including the force F, see below. It is an 11� 11 system which is complemented
with the five boundary conditions (33)–(37) on both sides of the channel and the mass conservation (38).

5.3. With force F 6¼ 0

We quickly consider the situation with external force
F 6¼ 0; ð71Þ

which was left out for simplicity above. The existence of a force changes the expression
x1 � PðUÞ ¼ 0 ) mxyy ¼
32

45p
rqy �

16

15
lF ð72Þ
for mxyy . In contrast to the linear case, in this situation the term lF gives a contribution when mxyy is inserted
the balance equation of r. Since the viscosity is temperature-dependent (10) we obtain a temperature gradient



in (67). This term again spoils the existence of a null-space to further reduce the system. Hence, we eliminate
the gradient similar to the procedure before using oyl ¼ x l

h oyh ¼ �x 4
15h qy þOðKn2Þ and arrive at
ðp þ ryyÞoyvx þ
2

5
oyqx þ

32

45

qy

p
oyrþ

32

45

r
p

oyqy ¼ �
p
l

r� 64x
225h

Fqy ð73Þ
as equation for r. Here, the term with F is algebraic and moves to the right hand side. At this point we may
continue to evaluate the null-space given by x2 as above and eliminate bRyy .

Note, that the substitution of the temperature gradient is only possible if the force is small. Otherwise the
change would not be third order in the Knudsen number. To be precise, in dimensionless form we need
FL=hR � Kn.

5.4. Interpretation

The major achievement of the calculations above are not the modified equations, but the discovery of the
relations (69) and (72) inherently coupling the moment variables. These relations have a deeper meaning which
becomes clear when studying larger moment systems.

5.4.1. Boundary layer reduction

In an infinite hierarchy applied to a boundary value problem all moment variables will exhibit boundary
layers governed by the Knudsen number, except the two fluxes of the conservation variables, i.e., shear
stress r and heat flux qy
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matically: The fully non-linear R13 equations for shear flow (26) require at most 13 boundary conditions, Gu
and Emerson, however, prescribe more than 13 boundary conditions. Thus their problem is overdetermined,
and they can produce results only by very careful adjustments of the accommodation coefficients.

6. Numerical method

6.1. Shear flow setting

We consider the one-dimensional domain y 2 ½�L=2; L=2� as depicted in Fig. 1. The simulation results in
this paper are based on a numerical method formulated for the transformed system (93) in a straightforward
way. This system is 11� 11 with non-singular matrix and is complemented with the boundary conditions (33)–
(37) at y ¼ �L=2 and at y ¼ L=2, as well as the total mass conservation (38). The discretization is given by n
point values
Ui ¼ UðyiÞ; yi ¼ �L=2þ iDy; Dy ¼ L
nþ 1

ð74Þ
such that y0 and ynþ1 are the boundary points. The values U0 and Unþ1 will be first extrapolated from the inte-
rior, and some of them are then replaced by means of the boundary conditions.

As further reduction, the density is separated from the system and we consider it to be a system of non-lin-
ear equations for
U ¼ fvx; r; qx;Rxy ; h; qy ; ryy ;myyy ; rxx;mxxyg; ð75Þ
which will be solved by iterative solutions of linear systems. The density appears in the matrix and on the
right hand side as a parameter and has to be recomputed in each iteration from the integrated momentum
balance
q ¼ P 0 � ryy

h
; ð76Þ
where the constant P 0 follows from the mass conservation (38). We used M0 ¼ 1 and trapezoidal rule to com-
pute P 0 from the current values h and ryy within each iteration.

The right hand side P ðUÞ is split into a matrix operation and the inhomogeneous part in the form
PðUÞ ¼ �ePðUÞUþ Pinh; ð77Þ

where ePðUÞ and Pinh are given in Appendix B in (95)/(96). The inhomogeneous part contains only the external
force. With this, the system AðUÞoyU ¼ PðUÞ is discretized using central differences
1

2Dy
ðAðUðkÞi ÞU

ðkþ1Þ
iþ1 � AðUðkÞi ÞU

ðkþ1Þ
i�1 Þ þ ePðUðkÞi ÞU

ðkþ1Þ
i ¼ Pinh 1 6 i 6 n ð78Þ
at all interior points. The superscripts ðkÞ indicates the iterations. The boundary conditions have to be built
into the boundary values U0 and Unþ1. First, all values are constructed from the interior points
U0 ¼ 2U1 �U2; Unþ1 ¼ 2Un �Un�1 ð79Þ

using linear extrapolation. The boundary conditions are incorporated based on these values. We rewrite the
boundary conditions (33)–(37) for the entire variable vector in the form
U ¼ BðUÞUþ Binh;pðUÞ; ð80Þ

where BðUÞ and Binh;pðUÞ can be found in Appendix B in (98)/(99). The inhomogeneous part Binh;pðUÞ with
p 2 f0; 1g contains the wall values hð0;1ÞW and vð0;1ÞW , as well as the non-linear expressions of slip velocity and tem-
perature jump. In (80) only the rows for fr;Rxy ; qy ;myyy ;mxxyg give boundary conditions, while the rows for
fvx; qx; h; ryy ; rxxg give identities.

Relation (80) is now evaluated on the extrapolated values (79) and inserted into (78). We obtain for i ¼ 1
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1

2Dy
AðUðkÞ1 ÞðIþ BðUðkÞ1 ÞÞU

ðkþ1Þ
2 þ ePðUðkÞ1 Þ �

1

Dy
AðUðkÞ1 ÞBðU

ðkÞ
1 Þ

� �
U
ðkþ1Þ
1

¼ Pinh þ
1

2Dy
AðUðkÞ1 ÞBinh;0ðUðkÞ1 Þ ð81Þ
and for i ¼ n
� 1

2Dy
AðUðkÞn ÞðIþ B�ðUðkÞn ÞÞU

ðkþ1Þ
n�1 þ ePðUðkÞn Þ þ

1

Dy
AðUðkÞn ÞB�ðUðkÞn Þ

� �
Uðkþ1Þ

n

¼ Pinh �
1

2Dy
AðUðkÞn ÞB�inh;1ðUðkÞn Þ ð82Þ
as replacement for (78). For simplicity we use U1 and Un in the evaluation of B instead of U0 and Unþ1 with no
serious loss of accuracy.

The form (80) is valid for the left wall. When using it for the right wall sign changes occur in the variables
indicated by B� and B�inh;1. The functions for the right wall are given by
B�ðUÞ ¼ QBðUÞQ; B�inh;1ðUÞ ¼ QBinh;1ðUÞ ð83Þ
with the use of the transformation matrix Q ¼ diagð1;�1; 1;�1; 1;�1; 1;�1; 1;�1Þ.
Combining all discrete values XðkÞ ¼ fU ðkÞi g16i6n we obtain a system in the form
AðXðkÞÞ � Xðkþ1Þ ¼ YðXðkÞÞ ð84Þ
with some block matrix AðXÞ which is solved iteratively. As start value Xð0Þ of the iteration we choose a ref-
erence equilibrium. Hence, the linear R13-system is solved in the first iteration. The stopping criteria is chosen
to be
kXðkþ1Þ � XðkÞk 6 tol ð85Þ
in some L1-type norm. The whole procedure was implemented and used in the algebra-software Mathematica.
In the linear case, the exact solution of the R13 equations is easily obtained, see Section 4.3. Based on the

exact solution an empirical study of the convergence order of the numerical method shows clear second order
of the numerical error. Bigger Knudsen numbers show smaller errors. Note, that in this case non-linear iter-
ations were not conducted. In the non-linear case, the numerical method requires 3–5 iterations for conver-
gence (see Fig. 3).
Empirical convergence of the proposed numerical method. Velocity of the linear R13 equations compared with exact solution for
t grids and Knudsen numbers.
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6.2. General setting

The above numerical method was tailored for the transformed system (93) with non-singular matrix. The
variables mxyy ; bRyy and q have explicitly been eliminated which resulted in a stable solution.

In more general settings, we have to deal with fully two-dimensional and/or unsteady situations where the
elimination would not be possible. While the details have not been examined yet, we propose to use the inter-
nal relations
Table
Modifi

Flow t

Poiseu
Couett

These

Fig. 4.
result
bRyy ¼
136

25p
q2

y �
72

35q
r2 ð86Þ

mxyy ¼
32

45p
rqy �

16

15
lF ð87Þ
1
ed accommodation coefficients ~bi used in the different simulations of Poiseuille and Couette flows with R13

ype Kn-number ~b1
~b2

~b3
~b4

~b5

ille 0.068 0.9 0.35 0.9 0.5 1.0
e 0.1 0.9 0.4 0.92 0.6 1.0

0.25 0.92 0.6 1.05 0.6 1.0
0.5 1.05 0.8 1.35 0.7 1.0

values give relatively good matching with DSMC data. The influence of the accommodation coefficients is discussed in Section 7.3.

Accelaration-driven channel flow with dimensionless force F ¼ 0:23 for different Knudsen numbers Kn ¼ 0:068; 0:15; 0:4; 1:0. The
for Kn ¼ 0:068 is compared to the DSMC results of [39] (symbols).



Fig. 5. Normalized mass flux through channel in the acceleration-driven case as a function of Knudsen number. Comparison between
direct linear Boltzmann solution (symbols), R13 with new boundary model and Navier–Stokes–Fourier.
obtained from the null-space conditions as boundary conditions in addition to the kinetic relations (33)–(37).
Furthermore, the mass conservation condition (38) can be substituted with vy ¼ 0 on the boundary if the
velocity vy is considered part of the variable set.

The implementation and investigation of this approach in a general setting is left for future work.



Fig. 7. Symmetric shear flow (Couette flow) between two plates (left and right) at Kn ¼ 0:25 for two different velocities of the walls.
Comparison of R13 (lines) with DSMC (symbols).
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7. Results

In this section we will discuss the results obtained with the new method for channel flows and compare
some of these to values obtained from Direct-Simulation-Monte-Carlo (DSMC) methods and direct solutions
of the Boltzmann equation. In these calculations we use different modified accommodation coefficients
~bi ¼ vi

2�vi
¼

ffiffiffiffi
ph
2

q
bi, see (97) and (100) in the appendix, for each moment boundary condition in order to match

the DSMC and Boltzmann results. We also allow these coefficients to vary with Knudsen number, see Table 1,
such that an overall agreement with DSMC is achieved. The influence and relevance of these coefficients is
discussed in Section 7.3 below.

The computational domain y 2 ½�0:5; 0:5� was discretized with N ¼ 200 points.

7.1. Poiseuille flow

Poiseuille flow is given by acceleration-driven channel flow with walls at rest. The channel is considered to
be infinitely long such that a full velocity profile has developed from the viscous boundary layers. The given
acceleration can be interpreted as a homogeneous pressure gradient.

We solve the R13-system in the form (93) with kinetic boundary conditions (97) and vð0;1ÞW ¼ 0; hð0;1ÞW ¼ 1 for
various Knudsen numbers with a dimensionless acceleration force fixed at F ¼ 0:23 and viscosity exponent
x ¼ 0:5. These values are chosen such that a Knudsen number Kn ¼ 0:068 reproduces the case of Poiseuille
flow calculated in [39] (see also [38]) by DSMC. We also calculate the cases Kn ¼ 0:15; 0:4; 1:0.



Fig. 4 displays the results for all Knudsen numbers together with the DSMC solution for Kn ¼ 0:068. A
good match with the DSMC result is obtained with accommodation coefficients given in Table 1. The figure
shows the conservation variables velocity and temperature, their fluxes stress r and heat flux qy , as well as the
rarefaction variables tangential heat flux qx and normal stress ryy . All variables are reproduced as smooth
curves without any tendencies to oscillate even when the grid is refined. Higher Knudsen numbers show stron-
ger non-equilibrium as indicated by larger magnitudes of qx and ryy . Interestingly, the temperature profile
starts to invert for higher Knudsen numbers. This has still to be confirmed by DSMC calculations.

The rarefied flow through a channel is known to exhibit a paradoxical behavior known as Knudsen para-
dox [15]. When reducing the Knudsen number in the experiment the normalized mass flow rate
J ¼
Z 1=2

�1=2

vðyÞdy ð88Þ
through the channel reaches a minimum and afterwards starts to increase for larger Knudsen numbers. Intu-
itively one would expect a decreasing mass flow for a smaller channel, but at a certain scale the friction inside
the gas becomes so small that the growing slip velocity at the wall dominates the mass flow.This can also be
observed in the results of the R13-system in Fig. 4. The velocity profile becomes flatter, but the slip increases
and the velocity curve for Kn ¼ 1:0 lies above the curve of Kn ¼ 0:4.

In [22], the mass flow rate has been calculated based on the linearized Boltzmann equation. After correctly
scaling the Knudsen number and the mass flow we compare the mass flow of the R13 results with those of [22]
and Navier–Stokes–Fourier in Fig. 5. The classical theory of Navier–Stokes–Fourier fails to describe the Knud-
sen minimum. The mass flow for R13 follows the Boltzmann result fairly accurate until Kn K 1:0 and then lifts
off too quickly. At these high Knudsen numbers the assumptions of the theory are not valid anymore.
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However, at lower Knudsen numbers the R13 systems demonstrates its ability to simulate micro-flows effi-
ciently and accurately.

7.2. Couette flow

Typically, a channel flow where one wall is kept at rest while the other is moving is referred to as plane
Couette flow. For symmetry reasons this setting corresponds to a channel flow where both walls move in
opposite directions with identical speeds. Again, we solve the R13-system in the form (93) with kinetic
boundary conditions (97). We choose vð0ÞW ¼ �vð1ÞW and hð0;1ÞW ¼ 1 with two different choices for the dimen-
sionless upper wall velocity vð1ÞW ¼ 0:63 and vð1ÞW ¼ 1:26. The Knudsen numbers considered are
Kn ¼ 0:1; 0:25; 0:5. For all these cases we compare with DSMC results produced in [33]. The viscosity expo-
nent is x ¼ 1:0.

For each Knudsen number the accommodation coefficients have been slightly modified for a good agree-
ment according to Table 1. However, the same boundary conditions, and thus the same accommodation coef-
ficients, have been used for different velocity cases. Interestingly, higher Knudsen numbers require slightly
higher accommodation coefficients.

The simulation results for Kn ¼ 0:1; 0:25; 0:5 are shown in Figs. 6–8, respectively. As before, we show
the variables velocity and temperature with their fluxes stress r and heat flux qy and the rarefaction vari-
ables tangential heat flux qx, and normal stress ryy . Both for higher velocities and higher Knudsen numbers
the agreement between R13 and DSMC is weaker, but still acceptable, especially so for velocity and
temperature.

There might be a systematic error in the normal stress ryy since it shows a consistently larger error than the
other fields.

We emphasize that our theory of boundary conditions leads to a smooth transition between linear and non-
linear settings, and that only as many boundary conditions are prescribed as mathematically required. In par-
ticular this guarantees that conservation of energy and momentum is fulfilled for all values of the individual
accommodation coefficients bi, and that no spurious non-linear boundary layers appear. These features dis-
tinguish the present theory of boundary conditions from earlier attempts, e.g. [12,33], where the prescription
of too many boundary conditions lead to problems with conservation laws, and to spurious (non-linear)
boundary layers.
Fig. 9. Comparison of the result for Poiseuille flow at Kn ¼ 0:068 with different setting of the modified accommodation coefficients ~bi. The
values ~bT1 are given in Table 1, while the result with ~b ¼ 1 sets all ~bi to unity.
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7.3. Discussion of accommodation coefficients

Most simulations based on DSMC or direct Boltzmann solvers use the accommodation model (28) as
boundary condition for the distribution function. However, the reduction of this model to boundary condi-
tions for continuum equations has to be handled with caution. Already in the case of NSF it is known that
the slip and jump boundary conditions have to be modified with artificial coefficients, see [7] or [26]. The rea-
son for this correction is the lack of Knudsen layers in NSF. Similarly, the R13 equations are not able to
describe the Knudsen layer completely due to the lack of sub layer contributions from higher moments, see
[27] and Fig. 2. Hence, we expect the boundary conditions to be modified. The natural choice suggested by
the structure of Eqs. (33)–(37) is to use different accommodation coefficients vi for different moments, i.e.,
fluxes. This was already suggested by Grad in [11]. To some extend, this modification can be viewed as gen-
eralization of the kinetic accommodation model, since one single parameter v is certainly not enough to
describe a general wall.

The physical and mathematical derivation of accommodation coefficients for moments remains open. A
first hint is given in [31] where a phenomenological model of the wall lead to boundary conditions structurally
equivalent to (33)–(37) but with general positive coefficients in place of v=ð2� vÞ ¼ ~b. This result encourages
us to modify ~bi in a more general way and also allow ~bi > 1 in order to reproduce the DSMC result. Of course,
the final theory should provide values for ~bi with minimal fitting and should by applicable in the general set-
ting. This theory is out of scope of this paper. Here, we only give values for ~bi that produce good agreement
and discuss the general influence of ~bi on the result.

If we restrict our focus to the fundamental shear flow variables fvx; r; qx; h; qy ; ryyg the qualitative influ-
ence of the ~bi on the solution is surprisingly simple. The main behavior in the vicinity of ~bi ¼ 1 is the
following: The temperature jump coefficient ~b3 influences only the temperature profile and has little to
no effect on the rest of the variables. The profile is shifted upwards if ~b3 is reduced and vice
versa. The slip coefficient ~b1 shifts the profiles of velocity and temperature simultaneously. If ~b1 is decreas-
ing the velocity profile is shifted upwards, while the temperature goes downwards. The coefficients b2;4 are
jump coefficients for the parallel heat flux and the normal stress, and both coefficients act independently
on their variable. If increased, they increase the amplitude of the Knudsen layer of the respective
variable.
10. Comparison of the result for Couette flow at Kn¼0:5 and vW¼0:63 with different setting of the modified accommodation
coefficients~bi.Thevalues~

bT1are given inTable1 ,while the resultwith ~b¼1sets all~bitounity.
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We present two figures in which the quantitative difference in the solution can be studied when the ~bi are
changing. The results found with the values for ~bi given in Table 1 are compared with the case ~bi ¼ 1. Fig. 9
shows the case of Poiseuille flow at Kn ¼ 0:068.

The values of ~bi in Table 1 are all below unity. The figure does not show shear stress and normal heat flux,
since the solution curves exhibit virtually no differences. Most pronounced is the overestimation of the ampli-
tude of the Knudsen layer in qx and ryy due to the increase of ~b2;4. Also, ~b3 ¼ 1 gives a too low temperature.
Overall, the model shows a very stable behavior.

Fig. 10 shows the case of Couette flow at Kn ¼ 0:5 and vW ¼ 0:63. Again, the case ~bi ¼ 1 is compared to the
result based on the values in Table 1. As above, the normal heat flux shows no difference, but this time the
shear stress deviates more than the velocity profile. Thus, the figure shows shear stress, temperature, parallel
heat flux and normal stress. The values of bi in Table 1 have been chosen such that the temperature profile is
matched and qx exhibits the correct slope in the middle. Clearly, there is a trade-off between shear stress, tem-
perature, and normal stress. The case Kn ¼ 0:5 with vW ¼ 0:63 is a severe test of the validity of the equations
and it is no surprise that difficulties arise. For a better judgement also comparisons to other DSMC data or
Boltzmann solutions should be performed.

8. Conclusion

This paper presented a rigorous approach to boundary conditions for moment-equations in kinetic theory
based on mathematical and physical requirements.

As basic set of equations the regularized 13-moment-system (R13) have been considered, while most of
the findings can be generalized to other systems. Shear flow between two walls served as generic model for
micro-flow simulations. We demonstrated that the boundary conditions that follow from kinetic
accommodation models for the odd flux variables (five conditions on the wall for r;Rxy ; qy ;myyy and
mxxy) are sufficient for both the linear and non-linear R13 equations. This agrees with our hypothesis that
the number of boundary conditions should not change when moving from linear to non-linear equations.

However, to achieve this, the equations have to be transformed and the transformed system provides addi-
tional internal relations that may be considered as additional boundary conditions. The transformation was
possible by adding expressions that are of high-order in Knudsen number such that the overall asymptotic
accuracy with respect to Boltzmann’s equation does not change. The additional internal relations represent
the bulk solutions of certain moments that fail to produce a boundary layer due to a finite set of variables.

Once the boundary conditions have been found, the formulation of a numerical method was done in a
straight forward way. Various examples for shear flow of Couette- and Poiseuille-type demonstrate the use-
fulness of the approach. From a physical point of view, additional modelling of specific accommodation coef-
ficients is required for more accurate results.
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Appendix A. Matrix formulation

A.1. Original system

The system (13)–(25) can be written in matrix form
AðUÞoyU ¼ PðUÞ: ð89Þ



Here, we use the special physical grouping of the variable vector
U ¼ fvx; r; qx;mxyy ;Rxy ; h; qy ; ryy ;Ryy ;myyy ; q; rxx;mxxyg; ð90Þ
which is in accordance with the decoupling observed in the linear case (41). The original fully non-linear sys-
tem is given by
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ð93Þ
Appendix B. Numerical matrices

For use in the numerical method of Section 6 the right hand side of the system (93) is written in the form
PðUÞ ¼ �ePðUÞUþ Pinh ð94Þ

with the matrix
ð95Þ
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and the vector
Pinh ¼ F ;� 64x
225h

Fqy ; 0 2 R8

� �
: ð96Þ
Note, that the density has been dropped from the variable vector which now reads
U ¼ fvx; r; qx;Rxy ; h; qy ; ryy ;myyy ; rxx;mxxyg. Also for incorporation into the numerical method the boundary
conditions (33)–(37) are cast into
U ¼ BðUÞUþ Binh;pðUÞ ð97Þ
with the matrix
ð98Þ
and the vector
Binh;pðUÞ ¼ 0; b1ðPvðpÞW þ 1
2
mxyyÞ; 0; �b2ðhPvðpÞW þ PV ðV 2 � 6DhÞ þ 1

2
mxyyÞ;

�
0; b3ð2PhðpÞW þ 1

2
PV 2 � 5

28
R̂yyÞ; 0; �b4

2
5
PhðpÞW þ 3

5
PV 2 þ 1

14
bRyy

� �
; 0; b5PV 2

�T

; ð99Þ
where p 2 f0; 1g represents the superscript for the left and right wall. The vector Binh;p contains the slip velocity

V ð0;1Þ ¼ vy � vð0;1ÞW and the temperature jump Dhð0;1Þ ¼ h� hð0;1ÞW . The accommodation coefficient is hidden in the

parameter
bi ¼
ffiffiffiffiffiffi
2

ph

r
vi

2� vi
; ð100Þ
where we assumed different accommodation coefficients for all boundary conditions in (33)–(37). In the ori-
ginal boundary conditions the trace of the fourth moment R was present. It does not appear as variable in
our system, but, instead, would have to be computed from (4). Due to relatively small numerical coefficients
we dropped it in (97) for simplicity.

Appendix C. Distribution function

The velocity distribution function for the R13 equations is based on the 26-moment-case of Grad, see e.g.
[26]. In peculiar velocities C ¼ c� v the distribution function reads
fR13ðCÞ ¼ ð1þ u13ðCÞ þ uR1ðCÞ þ uR2ðCÞÞfMðCÞ ð101Þ

with the Maxwell distribution
fMðCÞ ¼
q=mffiffiffiffiffiffiffiffi
2ph
p 3

exp �C2

2h

� �
ð102Þ
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and correction terms
u13ðCÞ ¼
1

h2p
ððqxCx þ qyCyÞ

C2

5
� h

� �
þ h

2
ðrxxC

2
x þ ryyC2

y þ rzzC
2
z þ 2rCxCyÞÞ; ð103Þ

uR1ðCÞ ¼
1

2h2p

1

3
mxxxC

3
x þ

1

3
myyyC

3
y þ mxxyC2

xCy þ mxyyCxC
2
y þ mxzzCxC

2
z þ myzzCyC

2
z

� �
; ð104Þ

uR2ðCÞ ¼
1

4h3p
ðRxxC

2
x þ RyyC2

y þ RzzC
2
z þ 2RxyCxCyÞ

C2

7
� h

� �
þ R

30
ðC4 � 10hC2 þ 15h2Þ

� �
: ð105Þ
The case uR1 ¼ uR2 ¼ 0 corresponds to Grad’s 13-moment distribution. In case of R13 the additional terms
involving mijk and Rij are to be evaluated with the constitutive Eqs. (21)–(25).
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